Versatile Biodegradable Poly(ester amide)s Derived from α-Amino Acids for Vascular Tissue Engineering
نویسندگان
چکیده
Biodegradable poly(ester amide) (PEA) biomaterials derived from α-amino acids, diols, and diacids are promising materials for biomedical applications such as tissue engineering and drug delivery because of their optimized properties and susceptibility for either hydrolytic or enzymatic degradation. The objective of this work was to synthesize and characterize biodegradable PEAs based on the α-amino acids L-phenylalanine and Lmethionine. Four different PEAs were prepared using 1,4-butanediol, 1,6-hexanediol, and sebacic acid by interfacial polymerization. High molecular weight PEAs with narrow polydispersity indices and excellent film-forming properties were obtained. The incubation of these PEAs in PBS and chymotrypsin indicated that the polymers are biodegradable. Human coronary artery smooth muscle cells were cultured on PEA films for 48 h and the results showed a well-spread morphology. Porous 3D scaffolds fabricated from these PEAs were found to have excellent porosities indicating the utility of these polymers for vascular tissue engineering.
منابع مشابه
Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a serie...
متن کاملDegradable Poly(ester amide)s for Biomedical Applications
Poly(ester amide)s are an emerging group of biodegradable polymers that may cover both commodity and speciality applications. These polymers have ester and amide groups on their chemical structure which are of a degradable character and provide good thermal and mechanical properties. In this sense, the strong hydrogen-bonding interactions between amide groups may counter some typical weaknesses...
متن کاملBiodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers.
Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. Most biodegradable polymers suffer from a short half life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize th...
متن کاملPoly(carbonate–amide)s Derived from Bio-Based Resources: Poly(ferulic acid-co-tyrosine)
Ferulic acid (FA), a bio-based resource found in fruits and vegetables, was coupled with a hydroxyl-amino acid to generate a new class of monomers to afford poly(carbonate-amide)s with potential to degrade into natural products. l-Serine was first selected as the hydroxyl-amino partner for FA, from which the activated p-nitrophenyl carbonate monomer was synthesized. Unfortunately, polymerizatio...
متن کاملA Crystallization-Induced Asymmetric Transformation using Racemic Phenyl Alanine Methyl Ester Derivatives as Versatile Precursors to Prepare Amino Acids
L-Tyrosine and L-Dopa are the precursors in the biological synthesis of amine neurotransmitters. On the other hand, phenylalanine as an aromatic amino acid (AAA) is a precursor in the synthesis of L-Tyrosine and L-Dopa. For some substrates such as amino acids, resolution by the formation of diastereomers offers an attractive alternative. Among different methods in this case, crystallization-ind...
متن کامل